Development of luminescent nanoparticles for the detection of pathogen-related diseases in plants

Ana Brinca-Moreira^{1,2,3,4}, António José Fernandes¹, Alexandre Faia Carvalho¹, Teresa Monteiro¹, Vincenzo Mondello⁴, Cátia Pinto², Rita Branquinho³, Florence Fontaine⁴, Florinda Mendes Costa¹

¹ i3N, Departamento de Física, Universidade de Aveiro, 3810-193 Aveiro, Portugal

² Associação SFCOLAB—Laboratório Colaborativo para a Inovação Digital na Agricultura, 2560-312 Torres Vedras, Portugal

³ i3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, NOVA University of Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal

⁴ USC INRAE 1488 RIBP, Université de Reims Champagne-Ardenne, Campus Moulin de la Housse Bâtiment 18, 51100 Reims, France

Main parameters and conditions to test:

- ✓ Laser wavelengths
- ✓ Solvent Nature

✓ Stabilizing

✓ pH

- ✓ Pulse frequency
- ✓ Beam (de)focusing

was not influenced by sintering conditions or by the presence of

5

LightMyPath

UNIVERSIT

universidade de aveiro

neoria poiesis praxis

i3N

Functionalization of 4 Nanoparticles (NPs)

Main goals to accomplish:

the dopant

- ✓ Acquire antibodies specific to the targets
- ✓ Develop protocol for immobilization of the antibodies onto the surface of the NPs

Application and evaluation of PLNPs in plants: *in vitro* and *in vivo*

- ✓ Mechanism of NPs' uptake (stem injection, leaf spraying)
- ✓ Transport of the NPs throughout the plant

Acknowledgements

This work was developed within the scope of the project i3N, UIBD/50025/2020 & UIDP/50025/2020 & LA/P/0037/2020, financed by national funds through the Portuguese Foundation for Science and Technology, FCT/MECAlso, the authors acknowledge Chaire Maldive financially supported by Grand Reims. Ana Brinca-Moreira acknowledges the PhD grant i3N – FCT UI/BD/152237/2021 and the funding from "Progama PESSOA COTUTELAS 2022" FCT/CampusFrance. The authors acknoledge Vecteezy.com for offering the use of their pictures.

 \checkmark The safe window for emission inside Grapevine's stem tissues is between 500 and 600 nm.

 \checkmark The addition of H₃BO₃ increases the relative intensity of the emission band at 525 nm and it might play a role in afterglow of Zn_2SiO_4 doped with Mn^{2+} .

 \checkmark Concentrations < 2.5% Mn²⁺ will be tested in order to optimize the afterglow.

 \checkmark Also, to enhance afterglow, co-doping with Ln³⁺ ions will be assessed in this matrix.

[1] FAO, "Climate change fans spread of pests and threatens plants and crops, new FAO study," 2021. https://www.fao.org/news/story/en/item/1402920/icode/ (accessed Feb. 23, 2022)