# Effects of dietary mercury on proteome and metabolome in *Dreissena* polymorpha, a sentinel of our aquatic environment



clarisse.seguin@univ-reims.fr

<u>Clarisse Seguin<sup>1</sup></u>, Damien Rioult<sup>1</sup>, Benjamin Marie<sup>2</sup>, Jean Armengaud<sup>3</sup>, Claudia Cosio<sup>1</sup>

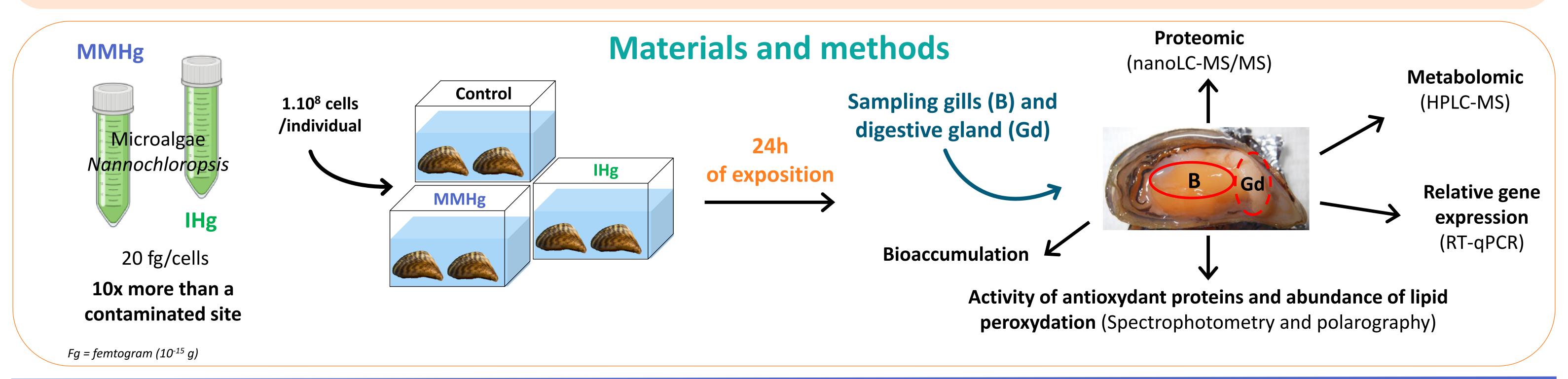
<sup>1</sup>UMR I-02 SEBIO, University of Reims Champagne-Ardenne, 51687 REIMS Cedex 2

<sup>2</sup>UMR CNRS 7245 MCAM, National Museum of Natural History, CP39 75231 PARIS Cedex 05

<sup>3</sup>Laboratory «Innovative technologies for Detection and Diagnostics», CEA-Marcoule, 30200 Bagnols-sur-Cèze

# Context

- Bioaccumulation of methylmercury (MMHg) in the food chain is a recognized health risk but is understudied compared to waterborne inorganic mercury (IHg)
- Bivalves are at the basis of the food webs
- > D.polymorpha has great filtration capacities (5 to 400 ml/bivalve/h)
- OMICS gives a global vision of the metabolism and cellular homeostasis


# **Objectives**

UNIVERSITE


DE REIMS

CHAMPAGNE-ARDENNE

- > Evaluate the bioaccumulation of dietary IHg and MMHg in D.polymorpha
- Identify and compare molecular toxicity pathways of IHg and MMHg by targeted approaches at the level of genes, antioxidant proteins and by non-targeted high throughput approaches using metabolomic and proteomic



# **Proteomic & metabolomic**

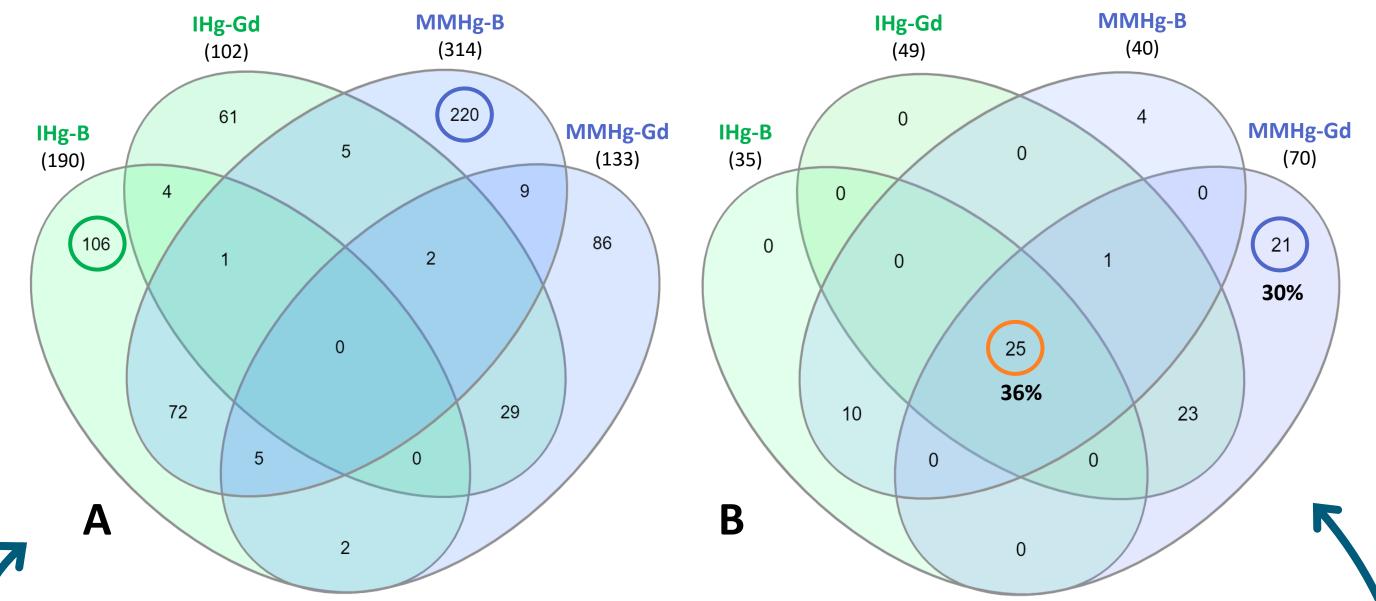


## **Bioaccumulation**

THg bioaccumulation in D.polymorpha in  $\mu$ g THg/g dw, percentage of MMHg and bioaccumulation factor (BAF) (n=8)

|         | Gills                   | BAF  | Digestive gland      | BAF  |
|---------|-------------------------|------|----------------------|------|
| Control | 0.04 ±0.0 (1,9%)        |      | 0.04 ±0.0 (0%)       |      |
| IHg     | <b>0.73 ±0.4</b> (3,8%) | 0.36 | 1.03 ±0.7 (0%)       | 0.51 |
| MMHg    | 0.30 ±0.1 (1,1%)        | 0.13 | <b>7.9 ±3.1</b> (0%) | 3.68 |

 $\rightarrow$  IHg is more accumulated in gills (*vs MMHg*) while MMHg is more accumulated in the digestive gland (*vs IHg*)


# Antioxydant responses

### **Relative gene expression**

Relative expression level of antioxydant genes. Significant modulations are in bold (p<0.05 vs control, n=8)

PLS DA of spectral count for proteins (A,B) and peptide mass (C,D) modulated by at least one exposure vs control in gills and the digestive gland (n=5 to 8)

→ Specific protein modulations are observed for IHg and MMHg vs control (A,C) → The response of metabolites is less marked than at the proteome level, and is more discriminating for MMHg



|                    |         | cat           | gst           | sod           | mt            |
|--------------------|---------|---------------|---------------|---------------|---------------|
| Gills              | Control | $1.1 \pm 0.4$ | 1.3 ±0.3      | 1.1 ±0.5      | $1.1 \pm 1.1$ |
|                    | IHg     | 1.2 ±1.2      | 0.3 ±0.3      | $1.4 \pm 1.2$ | 1.5 ±1.2      |
|                    | MMHg    | $1.0 \pm 1.1$ | 1.0 ±0.9      | 1.1 ±0.7      | 1.4 ±0.9      |
| Digestive<br>gland | Control | 1.2 ±0.4      | 0.9 ±0.5      | $1.1 \pm 1.0$ | $1.0 \pm 0.9$ |
|                    | IHg     | $1.0 \pm 0.8$ | 0.1 ±0.7      | $1.0 \pm 0.7$ | 0.6 ±0.4      |
|                    | MMHg    | $1.1 \pm 0.8$ | $0.4 \pm 0.4$ | $1.1 \pm 1.0$ | 0.7 ±0.6      |

#### **Enzymatic activities and lipid peroxydation**

Enzymatic activities of antioxydant proteins and lipid peroxydation. Significant modulations are in bold (p<0.05 vs control, n=8)

|                    |         | CAT         | GST         | SOD           | LOOH       |   |
|--------------------|---------|-------------|-------------|---------------|------------|---|
|                    | Control | 24.4 ±13.9  | 82.9 ±29.4  | $3.1 \pm 1.0$ | 16.7 ±10.2 |   |
| Gills              | IHg     | 27.6 ±4.6   | 135.2 ±28.4 | 3.5 ±1.4      | 25.9 ±9.0  |   |
|                    | MMHg    | 27.7 ±8.9   | 157.6 ±39.8 | 4.4 ±2.0      | 20.3 ±12.7 |   |
| Digestive<br>gland | Control | 108.3 ±29.2 | 235 ±95.8   | 4.9 ±1.5      | 59.3 ±26.4 |   |
|                    | IHg     | 84.2 ±15.6  | 207 ±60.8   | 4.3 ±1.8      | 77.2 ±14.9 |   |
|                    | MMHg    | 38.2 ±10.5  | 210.2 ±70.6 | 4.2 ±1.7      | 56.2 ±27.0 | _ |

→ Significant changes in relative **gst** gene expression and enzyme activity is observed, suggesting an increase of ROS production without lipid peroxydation

Venn diagram of modulated proteins (A) and metabolites (B) by IHg et MMHg (p<0,05 et FC>1,5)

→ MMHg modulates twice as much protein as IHg in the gills
 → MMHg modulate 30% of the metabolites in the digestive gland and 36% are modulated both by IHg and MMHg

Metabolic pathways affected by dietary Hg analysed by Webgestalt (KEGG)

|      | Gills                                                                       | Digestive gland                                                                                                   |
|------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Hg   | <ul> <li>Molecular signaling pathways</li> <li>Energy metabolism</li> </ul> | <ul> <li>Molecular signaling pathways</li> <li>Metabolism of sugars</li> <li>Metabolism of amino acids</li> </ul> |
| MMHg | - Metabolism of glycerolipids                                               | <ul> <li>DNA repair mechanism</li> <li>RNA transport</li> </ul>                                                   |

 $\rightarrow$  Molecular toxicity pathways affected by IHg and MMHg are different and differ in organs

Ν

## Conclusion

- MMHg caused more specific responses than IHg in the proteome and metabolome of *D.polymorpha*
- Bioaccumulation and molecular toxicity pathways of IHg and MMHg were distinct
- MMHg resulted in a higher alteration of metabolome in digestive gland in congruence with bioaccumulation
- OMICS were more sensitive than antioxydant responses

# Perspectives

- ➢ RNA-seq
- Kinetik up to 96h
- Subcellular distribution and speciation of Hg
- Isotopic Hg exposure to follow bioconversion

